
 

Bulgarian Chemical Communications, Volume 48, Special Issue E (pp. 342  -  347) 2016  

Soliton regime of propagation of optical pulses in isotropic medium under the 
influence of third order of linear dispersion and dispersion of nonlinearity 

D. Y. Dakova1, *, A. M. Dakova1, 2, V. I. Slavchev2, 3, L. M. Kovachev2  
1Faculty of Physics, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria 

2Institute of Electronics, Bulgarian Academy of Sciences,72 Tzarigradsko shossee,1784 Sofia, Bulgaria 
3Faculty of Pharmacy, Medical University - Plovdiv, Bul. Vasil Aprilov 15-А, 4002 Plovdiv, Bulgaria 

 
In the recent years the evolution of ultrashort broad-band optical pulses in nonlinear dispersive media attracts a considerable 

attention. For attosecond and phase-modulated femtosecond laser pulses the following condition is satisfied:. One of the most 
commonly used equation in optics, to describe the propagation of optical pulses in planar and one-dimensional waveguides, is the 
nonlinear Schrodinger equation (NSE). It is derived for narrow-band pulses () and works very well for nanosecond and 
picosecond laser pulses. As a result of different linear and nonlinear mechanisms, in femtosecond and attosecond region it is easy to 
obtain broad-band pulses where . In this case, it is more convenient to use the general nonlinear amplitude equation (NAE) 
which works properly for narrow-band as well as broad-band light pulses. In the present work a theoretical model of the evolution of 
broad-band optical pulses in single-mode silica (SiO2) fibers is presented. In the frames of ultrashort optics the influence of effects of 
dispersion and nonlinearity of the medium are significant. This requires the inclusion of additional terms in NAE that govern the 
third order of linear dispersion and dispersion of nonlinearity. In present paper we found a new exact analytical soliton solution of 
NAE. It is shown that it is possible to observe a soliton as a result of the dynamic balance between the effects of higher order of 
dispersion and nonlinearity of optical SiO2 fibers. Obtained results are important for better understanding of the evolution of broad-
band optical pulses, propagating in medium under the influence of third order of linear dispersion and dispersion of nonlinearity.     
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INTRODUCTION 

In the last two decades the evolution of femto-
second and attosecond optical pulses with broad-
band spectrum in nonlinear dispersive medium is of 
a considerable interest for the scientific community 
[1-3]. Its study is a result of the growing needs of 
ultrafast high intensity optics. One of the most 
commonly used equations to describe the 
propagation of laser pulses in one-dimensional 
structures and planar waveguides is the nonlinear 
Schrodinger equation [4-9]. In the frames of 
ultrashort optics (T0<1ps) it is usually modified by 
adding terms that govern the third order of the 
linear dispersion (TOD) and the dispersion of 
nonlinearity [4,10]:  
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where k‴ k″s1/(T0), LD=T0
2/|k"|.  

It is well known that, for such pulses, it is 
necessary TOD (k‴) to be taken into account even 
when group velocity dispersion (GVD) is nonzero 
k″≠0. As a result of that, the shape of the pulse 
becomes asymmetric with an oscillatory structure 
on one of its edges, depending on the sign of k‴ 
(Fig.1) [4].  
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Fig.1. Gaussian pulse in the presence of TOD, 

L'D=T0
3/|k‴|, [4] 

If pulses propagate at the zero-dispersion 
wavelength, the effects of TOD are dominant and 
lead to deep oscillations with intensity dropping to 
zero at the leading edge of the pulse when k‴<0 and 
at its trailing edge when k‴>0, respectively. In 
soliton regime of propagation, the main effect of 
TOD, on the evolution of laser pulses, is to shift 
theirs peak position linearly with distance z [4]. 
When k‴>0 the soliton peak is slowed down and 
when k‴<0 it speeds up. The shift is considerable in 
attosecond and femtosecond region. Effects of TOD 
on the propagation of optical solitons are widely 
discussed in [11-16]. 

Self-steepening (dispersion of nonlinearity) 
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(s=1/0T0) is a higher-order nonlinear effect that 
results from the intensity dependence of group 
velocity and leads to an asymmetry in the shape and 
spectrum of ultrashort pulses. Their peaks shift 
toward the trailing edges, moving at lower speed 
than wings (Fig.2) [4].  

 
Fig.2. Dispersionless case of self-steepening of 

Gaussian pulse, z=10LNL and 20LNL, s=1/0T0 [4] 

Self-steepening could create an optical shock 
wave, which formation is delayed in 
dispersionless case as a result of fiber losses. In 
soliton regime of propagation self-steepening 
leads to a spectral and temporal shift of pulses. 
These effects have been studied extensively in 
[17-21].  

It is important to mention that the separate 
influence of third order of linear dispersion and 
dispersion of nonlinearity alter the pulses 
parameters and breakup higher-order solitons into 
their constituents [4]. Thus, it was interesting to ask 
the question: Is it possible a soliton to be formed in 
such a medium as a result of the compensation of 
the simultaneous influence of these two effects?  

Our quick review shows that the dynamics of 
optical solitons in different nonlinear dispersive 
media is well studied, based on the nonlinear 
Schrоdinger equation [10,22-26]. Authors in [10] 
investigated the standard and modified NSE 
numerically. It is shown that for broad-band 
femtosecond optical pulses, under certain 
conditions, it is possible a soliton to be observed. It 
maintains its shape even in the presence of self-
steepening and third order of dispersion as a result 
of the balance between the higher-order nonlinear 
and dispersive effects (Fig.3) [10].    

The NSE very well describes the propagation of 
slowly varying amplitude function of the envelope 
of narrow-band pulses in optical fibers but in the 
frames of broad-band optics (phase-modulated 
femtosecond and attosecond laser pulses) it is 
necessary to work with the more general nonlinear 

amplitude equation NAE [27,28] which differs 
from NSE (1) with two additional terms. The 
biggest advantage of NAE is that it can be applied 
in both cases – for pulses with broad-band and 
narrow-band spectrum.  

 
Fig.3. Intensity profile of sech input pulse (dashed 

line) z=0 and z=10LD, s=1/4, T0=10fs, =0.02. 
Predictions of modified NSE are shown by the solid 
curve [10] 

In present paper we propose a theoretical model 
based on the evolution of light pulses with a broad-
band spectrum in optical fibers under the effects of 
third order of linear dispersion and dispersion of 
nonlinearity. In our work losses and Raman 
scattering of the medium are neglected. New exact 
analytical soliton solution of NAE is found by 
using mathematical method described in [28].  

BASIC EQUATION 

The 3D vector amplitude equation that describes 
the evolution of short optical pulses in Kerr-type 
nonlinear dispersive isotropic medium has the form 
[27]: 
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In the equation above (2) A


 is the vector 
amplitude function of the pulse envelope; t is time; 
, k, vgr, n and n2  are the carrier frequency, wave 
number, group velocity, linear and nonlinear 
refractive index of the medium, respectively; Δ is 
the operator of Laplace. 
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 It is assumed that:   

nAA


   ,                        (5) 

where n


 is the single constant vector and AA


  

is the magnitude of the amplitude function. Thus: 

  AnA 


  (6) 
 

By the substitutions above equation (2) can be 
presented in scalar form. 

 The evolution of one-dimensional pulses in SiO2 
single-mode fiber is examined. So, we are not 
interested in their transverse size. It is assumed 
that the axis Oz coincides with the axis of 
symmetry of the medium. Therefore, the 
magnitude of the amplitude function A is 
presented as a function of only two variables t 
and z, i.e.: 

),( ztAA    (7) 

 We work in local time coordinate system:  

grvztT /  . (8) 

By these assumptions equation (2) can be 
written in scalar form: 
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Using the substitutions above the amplitude 
equation (2) is presented in dimensionless form. 
The parameters z0 and T0 represent the initial 
longitudinal length and pulse duration; A0 is its 
initial amplitude. The constant α (α>1) 
characterizes the number of harmonic oscillations 
at level 1/е from the maximum of the pulse 
amplitude. The coefficients β2 and β3 are connected 
with second and third order of the linear dispersion. 
It is assumed that higher orders of linear dispersion 
are negligible compared to the second and third 
ones, characterized by k'' and k'''. Therefore, we 

consider only the first two terms of the differential 
operator (3). The GVD of the medium is 
anomalous, i.e. k''<0 and β2<0: β2= -| β2|. The 
parameter γ depends on the nonlinear refractive 
index n2. 

Equation (9) is a nonlinear partial differential 
equation that describes the change in the magnitude 
of the amplitude function of pulses, propagating in 
SiO2 single-mode fibers. It presents the effects of 
linear and nonlinear dispersion of the medium and 
describes the evolution of the amplitude function of 
the electric field even when the laser pulse admits 
few optical cycles inside. Here, it is important to 
mention that for nanosecond and picosecond light 
pulses, the coefficient 1/2in front of the brackets 
in equation (9) is quite small and it can be 
neglected. In this case, NAE tends to the modified 
NSE. That is the reason why, NSE describes very 
well the evolution of narrow-band laser pulses in 
single-mode fibers. Obviously, in femtosecond and 
attosecond regions, the coefficient 1/2 is 
significant and the two additional terms - the 

second derivative ( 22 /  A ) and the mixed 

derivative (  /2 A ), must be taken into account 

[29,30]. 

SOLITON SOLUTION OF THE NONLINEAR 
AMPLITUDE EQUATION 

We search for a solution of the scalar nonlinear 
amplitude equation (9) of the form: 





ux

ibiaxA
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 ),exp()(),(
, (10) 

where a, b and u are constants which are due to be 
defined, Ф(x) is a real function. It is important to 
mention that constant u has a meaning of velocity 
which shifts the peak of pulses. 

As a first step, the expression (10) is substituted 
in equation (9). A complex nonlinear ordinary 
differential equation of third order and third degree 
with respect to the unknown function Ф(x) is 
obtained. In the next step, the real and imaginary 
parts on both sides of the equation are equalized. 
Thus, the following two differential equations are 
obtained: 
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The coefficients in front of the corresponding 
derivatives and degrees of the function Ф in 
equations (11) and (12) are dimensionless. Equation 
(12) is integrated with respect to the variable x to 
lower its order. Thus, it takes the following form:  

 
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As it can be noticed, equations (11) and (13) are 
of the same type and are referred to the same 
unknown function. In that sense, they should 
match. Moreover, the coefficients in front of the 
corresponding derivatives and degrees of Ф must 
be the same. Thus, the integration constant B is zero 
[28,31]. By equalizing these coefficients constants 
a, b and u are obtained:   
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Once the three constants are defined in a way 
that equations (11) and (13) match, for the 
unknown real function Ф=Ф(x) the following 
ordinary nonlinear differential equation of second 
order is obtained: 

02'' 322  N ,  (15) 
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The number of the soliton is given as follow:  
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The soliton solution of equation (15) has a well-
known form [4-7]: 

 xh
s

C



 sec   (18) 

The constant η has a meaning of amplitude. The 
solution (18) has a physical meaning when  is real 
and. This condition can be satisfied by the 
appropriate selection of the parameters of optical 
pulses and SiO2 fibers.  

Having in mind the expressions (14) and 
substituting (18) in (10), a new exact analytical 
soliton solution of NAE (9), including the effects of 
self-steepening and TOD, is obtained: 
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This result differs from the standard soliton 
solution of NSE. The additional phase term found 
in solution (19) leads to a significant temporal shift 
of the soliton peak position. Constants (14) depend 
on the number of optical cycles inside the pulse and 
the parameters of the medium. The biggest 
advantage of the soliton solution (19) is that, it can 
be used for more accurate description of the 
propagation of narrow-band as well as broad-band 
optical pulses in isotropic one-dimensional 
nonlinear dispersive media.  

NUMERICAL CALCULATIONS 

For laser pulse with =1,55m propagating in 
fused silica (n01,47; |k"|1,8.10-26s2/m;           
|k"'|10-40s3/m) [4] it is defined that k0=4,05.106 m-1, 
|2|3.10-3 and 1,53. In that case, it is assumed 
that 

Thus, the following approximate solution of 
equation (9) is obtained:  
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On Fig.4 and Fig.5 numerical calculations of 
expression (20) are shown. It is observed a soliton 
with amplitude proportional to the parameter , 
characterizing the number of harmonic oscillations 
under the pulse envelope. In Fig.4 the amplitude of 
initial sech pulse with time duration T0=10fs at z=0 
is presented. 

 
Fig.4. Amplitude of the sech pulse with T0=10fs and 

z=0 

345



D. Y. Dakova et al.: Soliton regime of propagation of optical pulses in isotropic medium under the influence of third order of linear 
dispersion and dispersion of nonlinearity 

In Fig.5 is shown the same femtosecond sech 
pulse at distance z=z0. 

Fig.5. Amplitude of the sech pulse with T0=10fs and 
z=z0 

The shift in the temporal position of the soliton 
peak can be clearly seen. Nevertheless, the pulse 
keeps its shape as a result of the dynamic balance 
between the effects of third order of linear 
dispersion and dispersion of nonlinearity. As it was 
mentioned before, this shift is significant in 
attosecond and femtosecond regions [4,10]. For 
laser pulses with many oscillations under the 
envelope, two additional terms in equation (9) do 
not impact the soliton evolution and do not lead to a 
noticeable temporal shift. Decreasing the number of 
oscillations, the effect becomes important. This 
phenomena is explained in the frames of the 
applied mathematical model [29,32] and the 
influence of higher-order nonlinear and dispersive 
effects [4,10].  

CONCLUSION 

In the present paper, the evolution of optical 
pulses with broad-band spectrum in nonlinear 
dispersive SiO2 medium is reviewed. A new exact 
analytical soliton solution of NAE (9) is found, in 
which the effects up to third order of linear 
dispersion and dispersion of nonlinearity are 
included. The expression (19) differs significantly 
from the standard soliton solution of NSE – the 
constants  and u, connected with the amplitude 
and the velocity of the temporal shift, respectively, 
depend on the coefficients, characterizing the 
second and third order of the linear dispersion and 
the nonlinearity of the medium, as well as the 
number of harmonic oscillations at level 1/е of 
maximum of the amplitude.  

The analytical solution (19) and the numerical 
calculations of expression (20) answer to our 
question: Is it possible a soliton in single-mode 

fibers to be formed under the simultaneous 
influence of TOD and self-steepening effects? Fig.4 
and Fig.5 show that in such media it is possible a 
soliton to be observed. The pulse is stable and 
keeps its shape as a result of the dynamic balance 
between the higher-order nonlinear and dispersive 
effects. 
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